3 research outputs found

    Removal of basic yellow cationic dye by an aqueous dispersion of Moroccan stevensite

    Get PDF
    The aim of this study was to investigate the adsorption of basic yellow, a cationic dye, from aqueous solution by natural stevensite, with 104m2/g of specific surface area. The kinetics and the effects of several experimental parameters such as the pH of the solution, adsorbent dose and initial dye concentration were researched using a batch adsorption technique. The results showed that an alkaline pH favoured basic yellow adsorption and the adsorption reached equilibrium in about 20min. It was concluded that the adsorption process was governed by the electrostatic interaction. The isothermal data were fitted by means of Langmuir and Freundlich equations, and a monolayer adsorption capacity of 454.54mg/g was calculated. Finally, a good agreement was found between the pseudo-second order model and the experimental data. A high maximum adsorption capacity was obtained (526mg/g) and a maximum surface density of ~9 dye molecules/nm2 was estimated, involving a columnar arrangement of the adsorbed molecules.Agencia Espa帽ola de Cooperaci贸n Internacional A/018025/08Junta de Andaluc铆a TEP11

    Larnite powders and larnite/silica aerogel composites as effective agents for CO2 sequestration by carbonation

    Get PDF
    This paper presents the results of the carbonation reaction of two sample types: larnite (Ca2SiO4) powders and larnite/silica aerogel composites, the larnite acting as an active phase in a process of direct mineral carbonation. First, larnite powders were synthesized by the reaction of colloidal silica and calcium nitrate in the presence of ethylene glycol. Then, to synthesize the composites, the surface of the larnite powders was chemically modified with 3-aminopropyltriethoxysilane (APTES), and later this mixture was added to a silica sol previously prepared from tetraethylorthosilicate (TEOS). The resulting humid gel was dried in an autoclave under supercritical conditions for the ethanol. The textures and chemical compositions of the powders and composites were characterized.The carbonation reaction of both types of samples was evaluated by means of X-ray diffraction and thermogravimetric analysis. Both techniques confirm the high efficiency of the reaction at room temperature and atmospheric pressure. A complete transformation of the silicate into carbonate resulted after submitting the samples to a flow of pure CO2 for 15 min. This indicates that for this reaction time, 1 t of larnite could eliminate about 550 kg of CO2. The grain size, porosity, and specific surface area are the factors controlling the reaction.Ministerio de Medio Ambiente A266/2007/3-11.1Ministerio de Educaci贸n y Ciencia MAT2005-0158
    corecore